

 BCl_3

Ionic Equilibrium

Date Planned ://	Daily Tutorial Sheet	Expected Duration : 90 Min
Actual Date of Attempt : / /	Level-0	Exact Duration :

Very Short Answer Type (1 Mark)

- What is meant by the conjugate acid-base pair ? Find the conjugate acid/base for the following species. HNO_2 , CN^- , $HClO_4$, F^- , OH^- , CO_3^{2-} and S^{2-}
- **2.** Which of the given species are Lewis acids ? H₂O, BF₃, H⁺, NH₄⁺
- **3.** What will be the conjugate bases for the Bronsted acids? HF, H₂SO₄ and HCO₃
- **4.** Write the conjugate acids for the Bronsted bases: NH₂, NH₃ and HCOO⁻⁻
- The species: H_2O , HCO_3^- , HSO_4^- and NH_3 can act both as Bronsted acid and base. For each case give the corresponding conjugate acid and base.
- **6.** Classify the following species into Lewis acids and Lewis base and show how these acts as Lewis acid/base?
 - (a) OH^- (b) F^- (c) H^+ (d)

Short Answer Type-I (2 Marks)

- 7. The ionization constant of HF, HCOOH and HCN at 298 K are 6.8×10^{-4} , 1.8×10^{-4} and 4.8×10^{-9} respectively. Calculate the ionization constants of the corresponding conjugate base.
- 8. The first ionization constant of H_2S is 9.1×10^{-8} . Calculate the concentration of HS^- ion in its 0.1 M solution. How will this concentration be affected if the solution is 0.1 M in HCl also? If the second dissociation constant of H_2S is 1.2×10^{-13} , calculate the concentration of S^{2-} under both conditions.
- 9. It has been found that pH of a 0.01 M solution of an organic acid is 4.15. Calculate the concentration of the anion, the ionization constant of the acid and its pK_a .
- 10. The degree of ionization of a $0.1\,\mathrm{M}$ bromoacetic acid (BrCH₂COOH) solution is 0.132. Calculate the pH of the solution and the pK_a of bromoacetic acid.
- 11. What is the pH of 0.001 M aniline solution? The ionization constant of aniline is 4.27×10^{-10} . Calculate the degree of ionization of aniline in the solution. Also calculate the ionization constant of the conjugate acid of aniline.
- 12. Calculate the degree of ionization of 0.05 M acetic acid if its pK_a value is 4.74. How is the degree of dissociation affected when its solution also contains:
 - (a) 0.01 M HCl
- **(b)** 0.1 M in HCl
- 13. The ionization constant of dimethylamine (CH_3NHCH_3) is 5.4×10^{-4} . Calculate its degree of ionization in its 0.02 M solution. What percentage of dimethylamine is ionized if the solution is also 0.1 M in NaOH?

Short Answer Type-II (3 Marks)

- 14. Calculate the hydrogen ion concentration in the following biological fluids whose pH are given below:
 - (a) Human muscle fluid, 6.83
- **(b)** Human stomach fluid, 1.2

(c) Human blood, 7.38

- (d) Human saliva, 6.4
- **15.** The pH of milk, black coffee, tomato juice, lemon juice and egg white are 6.8, 5.0, 4.2, 2.2 and 7.8 respectively. Calculate the corresponding hydrogen ion concentration in each.
- 16. The solubility of $Sr(OH)_2$ at 298 K is 19.23 g/L of solution. Calculate the concentrations of strontium and hydroxyl ions and the pH of the solution.
- 17. The ionization constant of propanoic acid (CH_3CH_2COOH) is 1.32×10^{-5} . Calculate the degree of ionization of the acid in its 0.05 M solution and also its pH. What will be its degree of ionization if the solution is 0.01 M in HCl also?
- **18.** The pH of 0.1M solution of cyanic acid (HCNO) is 2.34. Calculate the ionization constant of the acid and its degree of ionization in the solution.
- 19. The ionization constant of nitrous acid (HNO₂) is 4.5×10^{-4} . Calculate the pH of 0.04 M sodium nitrite (NaNO₂) solution and also its degree of hydrolysis.

Long Answer Type (5 Marks)

- **20.** A 0.02 M solution of pyridinium hydrochloride $\left[C_5H_5NH^+CI^-\right]$ has pH = 3.44. Calculate the ionization constant of pyridine.
- **21.** Predict if the solutions of the following salts are neutral, acidic or basic :

$${\it NaCl, KBr, NaCN, NH_4NO_3, NaNO_2, KF}$$

- 22. The ionization constant of chloroacetic acid $\left[\text{CICH}_2\text{COOH}\right]$ is 1.35×10^{-3} . What will be the pH of 0.1 M acid and its 0.1 M sodium salt solution?
- **23.** Calculate the pH of the resultant mixtures :
 - (a) $10 \text{ mL of } 0.2 \text{ M Ca(OH)}_2 + 25 \text{ mL of } 0.1 \text{ M HCl}$
 - **(b)** 10 mL of 0.01 M $H_2SO_4 + 10$ mL of 0.01 M $Ca(OH)_2$
 - (c) $10 \text{ mL of } 0.1 \text{ M H}_2\text{SO}_4 + 10 \text{ mL of } 0.1 \text{ M KOH}$
- **24.** Determine the solubilities of silver chromate, barium chromate, ferric hydroxide, lead chloride and mercurous iodide at 298 K from their solubility product constants.

$$\begin{split} [\text{K}_{\text{sp}}(\text{Ag}_2\text{CrO}_4) &= 1.1 \times 10^{-12}; \ \text{K}_{\text{sp}}(\text{BaCrO}_4) = 1.2 \times 10^{-10} \\ \text{K}_{\text{sp}}[\text{Fe}(\text{OH})_3 &= 1.0 \times 10^{-38}, \ \text{K}_{\text{sp}}(\text{PbCl}_2) = 1.6 \times 10^{-5}, \ \text{K}_{\text{sp}}(\text{Hg}_2\text{I}_2) = 4.5 \times 10^{-29}] \end{split}$$

Determine also the molarities of individual ions.

25. The solubility product (K_{sp}) of Ag_2CrO_4 and AgBr are 1.1×10^{-22} and 5.0×10^{-13} respectively. Calculate the ratio of the molarities of their saturated solutions.

VMC | Ionic Equilibrium 108 DTS | Level-0